《mRNA-LNP疫苗的結構與穩定性》文獻解讀系列六

文章來源:AVT發布時間:2021-09-06瀏覽次數:

LNP穩定性


除了mRNA 的完整性外,LNP 的穩定性對于 mRNA-LNP 疫苗的質量也至關重要。目前的mRNA疫苗沒有披露關于LNP 穩定性測試的數據,但 Onpattro (patisaran) 的siRNA-LNP 制劑保存在2~8°C 之間時具有三年的有效期,同時該產品不能冷凍保存。


Onpattro 的LNP 系統的組成是:可電離的陽離子脂質DLin-MC3-DMA、DSPC、膽固醇、PEG2000-C-DMG(見表 1)(摩爾比 50:10:38.5:1.5),它們在組成上類似于 Comirnaty 和 mRNA-1273的LNP。在一項siRNA-LNPs 的研究中用類脂質306O 13代替DLin-MC3-DMA,樣品水溶液在 2°C 、pH 7 的環境下下能穩定儲存156 天,其粒徑和siRNA包封率沒有明顯變化。Suzuki 等人的補充研究表明 siRNA-LNP 能在 4°C 環境下穩定儲存1.5??傊?,這些數據都表明是mRNA 的不穩定,而不是 LNP 的不穩定,導致了當前mRNA-LNP疫苗的儲存條件嚴苛和保質期短。


Fan等人總結了脂質體和 LNP的穩定性及其質量屬性。LNP 可以承受化學和物理不穩定性,化學不穩定性包括 LNP 中易水解和氧化的脂質的降解。脂質氧化可能發生在不飽和脂肪酸部分(Comirnaty 和 mRNA-1273 不存在該問題)和膽固醇,氧化可能是PEG2000 -DMG中PEG基團存在雜質導致的結果。除此之外,氧化性雜質也可能導致包封的mRNA 氧化。脂質例如 DSPC 和可電離的陽離子脂質中的羧酸酯鍵容易受溫度和pH依賴性的水解的影響(圖 6)。


LNP 穩定性的另一個關鍵因素是物理穩定性,主要有三種類型的物理不穩定性:包封的藥物的聚集、融合和泄漏。 LNP 在儲存和流通過程中容易發生 LNP 的聚集,所以為了增加穩定性,LNP 中通常添加PEG化脂質,LNP微粒表面的PEG 分子可防止LNP 聚集。


另一種類型的物理不穩定性主要由于mRNA 的泄漏,這主要影響包封產品的穩定性。值得注意的是,包封率通常 > 90%,并且尚未報道過在儲存期間出現mRNA泄露(用RiboGreen監測)的情況。未包封的mRNA(“裸露的mRNA”)幾乎不會被細胞攝??;而且它會迅速被降解,因此無法用于翻譯。

翻譯.png


圖6 用于 mRNA-LNP疫苗BNT162b2 (Comirnaty) 和 mRNA-1273的脂質。


由于注射 mRNA-LNP疫苗時的超敏反應可能與PEG化脂質有關,因此,已經研究了防止聚集體形成的替代脂質。使用多聚肌氨酸修飾脂質能使脂質遞送系統更加穩定,在防止LNP聚集的同時能夠減少超敏反應。但是目前仍然需要更多的實驗來確定這種 PEG化脂質替代品是否能真正的提高 mRNA 的穩定性(例如不含過氧化物,注:目前使用的PEG脂質由于工藝原因,會有一定的過氧化物雜質,這會引起LNP中其他含有不飽和鍵的脂質和mRNA的氧化降解)。


分析 LNP 穩定性


Fan 等人在前面提到的文章中對監測 LNP 穩定性的分析方法進行了專業評估。我們推薦感興趣的讀者可以查看相關文獻。


mRNA-LNP中哪個成分更不穩定?


迄今為止,已有幾項研究考察了在儲存期間穩定 mRNA 和穩定 LNP 的方法。然而,兩者之中哪一個才是mRNA-LNP穩定性的瓶頸?當mRNA-LNP 制劑未冷凍時,是mRNA 降解?還是 LNP 降解導致穩定性問題?還是 mRNA 與 LNP 的組合?


與mRNA-LNP 系統相比,包封化學修飾且高度穩定的siRNA 分子(例如 Onpattro)的LNP系統具有更長的有效期。這表明當前的穩定性瓶頸不是 LNP,而是 mRNA。


迄今為止,公開資料還沒有披露關于 mRNA-LNP 制劑中 mRNA 和 LNP 完整性的研究報告。在研究存儲效果的少數研究中,例如 Zhang等人的研究,并沒有考察長期儲存的穩定性。因此,我們將首先研究裸露的mRNA的長期穩定性,但需要注意的是,這可能與包封在 LNP中的 mRNA 的穩定性有所不同(見下文)。


在Pascolo等人的綜述中,裸露的mRNA的水溶液在無RNase的情況下只能在4°C下儲存幾天。這似乎符合目前對 mRNA 不穩定性的看法。目前關于裸露的mRNA長期穩定性的研究表明,mRNA 需要冷凍或干燥才能保持更長時間的穩定。


Roesler等人2009年的研究表明,編碼熒光素酶的mRNA 在無RNA酶存在的條件下,分別以液體或凍干形式在室溫下儲存,表達效率分別在第8天和第16天開始出現降低,凍干輔料和凍干工藝方面未經優化(見圖 7)。同時本研究無法得出關于2-8℃溫度下長期儲存穩定性的結論,因為穩定性研究只考察了32 天。


Wayment-Steele等人經過基于理論降解速率計算,預測 長度為4000 nt的mRNA在 pH 7.4 和5 °C 的條件下,存儲的半衰期為 941 天。他們注意到較長的mRNA序列,例如SAM,更容易發生水解。由于這是jin基于水解降解動力學的理論計算結果,可能會低估 了mRNA的實際降解速率,例如,當存在痕量RNase時,必須對 mRNA 的穩定性進行更多研究才能知道mRNA實際存儲的穩定性情況。

微信圖片_20210906095556.png

圖7 通過轉染BHK-21細胞中熒光素酶表達效率分析mRNA在水中的穩定性


這些研究表明,在水溶液中 mRNA 可能不如 LNP 穩定。然而,應該重申的是,這兩種成分的穩定性考察結果可能與LNP包封mRNA 的情況不同。如前幾節所述,mRNA 與可電離的陽離子脂質、膽固醇和水一起位于 LNP 核內部(參見圖 4)。這意味著 mRNA 處于水性環境中,因此容易發生水解,其水解的機制可能與溶液中 mRNA水解 的機制相似。然而,另一方面,LNP 內的 mRNA 可能通過疏水、氫鍵和/或靜電相互作用被可電離的脂質包裹。在這種情況下,mRNA 可能比溶解在水溶液中的裸露的mRNA更穩定。在沒有進一步研究的情況下,只能得出結論,mRNA 的不穩定性導致了儲存條件苛刻。 


儲存條件不同的原因


當前 mRNA 疫苗的另一個有趣方面是,不同廠家疫苗報告的儲存溫度和相應的“有效期”差異很大:從 -80°C 到 2-8°C,從幾天到幾個月。是否因為mRNA 疫苗處的不同導致這種儲存條件的差異?又或者,儲存條件的差異是否與熱穩定性測試結果相關或更可靠的方法有關?這些信息很重要,因為深入了解對穩定性產生積極影響的因素可能是未來設計熱穩定mRNA 疫苗的關鍵突破點。


Acuitas Therapeutics的首席執行官Tom  Madden 曾經在采訪中表示,Moderna 和 Pfizer/BioNTech mRNA 疫苗可能具有相同的穩定性。后者是否有可能使用更保守的方法來確保穩定性?盡管如此,目前必須在 -60 至 -80 °C 之間儲存的Pfizer/BioNTech mRNA-LNP 疫苗很可能也在更高的溫度和冷藏條件下進行了穩定性考察,正如CureVac 科學家所做的那樣。


此外,穩定性測試中的分析技術在靈敏度上可能不同,驗收標準也可能不同。疫苗穩定性研究報告的發布可能對這些疑問作出回答,對此進行比較研究會是很有趣的工作。



文獻來源:

1. Abdelwahed, W., Degobert, G., Stainmesse, S., Fessi, H., 2006. Freeze-drying of

nanoparticles: Formulation, process and storage considerations. Adv. Drug Deliv.

Rev. 58 (15), 1688–1713. https://doi.org/10.1016/j.addr.2006.09.017.

2. Yanez Arteta, M., Kjellman, T., Bartesaghi, S., Wallin, S., Wu, X., Kvist, A.J.,

Dabkowska, A., Sz′ekely, N., Radulescu, A., Bergenholtz, J., Lindfors, L., 2018.

Successful reprogramming of cellular protein production through mRNA delivered

by functionalized lipid nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 115 (15),

E3351–E3360. https://doi.org/10.1073/pnas.1720542115.

3. Ayat, N.R., Sun, Z., Sun, D.a., Yin, M., Hall, R.C., Vaidya, A.M., Liu, X., Schilb, A.L.,

Scheidt, J.H., Lu, Z.-R., 2019. Formulation of biocompatible targeted ECO/siRNA

nanoparticles with long-term stability for clinical translation of RNAi. Nucleic Acid

Ther. 29 (4), 195–207. https://doi.org/10.1089/nat.2019.0784.

4. Baden, L.R., El Sahly, H.M., Essink, B., Kotloff, K., Frey, S., Novak, R., Diemert, D.,

Spector, S.A., Rouphael, N., Creech, C.B., McGettigan, J., Khetan, S., Segall, N.,

Solis, J., Brosz, A., Fierro, C., Schwartz, H., Neuzil, K., Corey, L., Gilbert, P.,

Janes, H., Follmann, D., Marovich, M., Mascola, J., Polakowski, L., Ledgerwood, J.,

Graham, B.S., Bennett, H., Pajon, R., Knightly, C., Leav, B., Deng, W., Zhou, H.,

Han, S., Ivarsson, M., Miller, J., Zaks, T., 2021. Efficacy and safety of the mRNA-

1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384 (5), 403–416. https://doi.org/

10.1056/NEJMoa2035389.

5. Ball, R.L., Bajaj, P., Whitehead, K.A., 2016. Achieving long-term stability of lipid

nanoparticles: examining the effect of pH, temperature, and lyophilization. Int. J.

Nanomed. 12, 305–315. https://doi.org/10.2147/IJN.S123062.

6. Bloom, K., van den Berg, F., Arbuthnot, P., 2020. Self-amplifying RNA vaccines for

infectious diseases. Gene Ther. 1–13 https://doi.org/10.1038/s41434-020-00204-y.

Brader, M.L., Williams, S.J., Banks, J.M., Hui, W.H., Zhou, Z.H., Jin, L., 2021.

7. Encapsulation state of messenger RNA inside lipid nanoparticles. Biophys. J. https://

doi.org/10.1016/j.bpj.2021.03.012.

8. Brisco, M.J., Morley, A.A., 2012. Quantification of RNA integrity and its use for

measurement of transcript number. e144–e144 Nucleic Acids Res. 40. https://doi.

org/10.1093/nar/gks588.

9.Burke, P.A., Gindy, M.E., Mathre, D.J., Kumar, V., Prud’homme, R.K., 2013. Preparation

of Lipid Nanoparticles. US 2013/0037977.

10. Buschmann, M.D., Carrasco, M.J., Alishetty, S., Paige, M., Alameh, M.G., Weissman, D.,

2021. Nanomaterial delivery systems for mRNA vaccines. Vaccines 9 (1), 65. https://

doi.org/10.3390/vaccines9010065.




上一篇:暫無上一篇下一篇:暫無下一篇